Holy Cross College (Autonomous), Nagercoil Kanyakumari District, Tamil Nadu. Accredited with A⁺ by NAAC - IV cycle – CGPA 3.35

Affiliated to Manonmaniam Sundaranar University, Tirunelveli

Semester I - IV POs, PSOs & COs

DEPARTMENT OF MATHEMATICS

2023-2026

(With effect from the academic year 2024-2025)

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

POs	Upon completion of M. Sc. Degree Programme, the graduates will be able to:	Mapping with
		Mission
PEO1	apply scientific and computational technology to solve social and ecological issues and pursue research.	M1, M2
PEO2	continue to learn and advance their career in industry both in private and public sectors.	M4 & M5
PEO3	develop leadership, teamwork, and professional abilities to become a more cultured and civilized person and to tackle the challenges in	M2, M5 & M6
	serving the country.	

PROGRAMME OUTCOMES (POs)

Pos	Upon completion of M.Sc. Degree Programme, the graduates will be able to:	Mapping with PEOs
PO1	apply their knowledge, analyze complex problems, think independently, formulate and perform quality research.	PEO1 & PEO2
PO2	carry out internship programmes and research projects to develop scientific and innovative ideas through effective communication.	PEO1, PEO2 & PEO3
PO3	develop a multidisciplinary perspective and contribute to the knowledge capital of the globe.	PEO2
PO4	develop innovative initiatives to sustain ecofriendly environment	PEO1, PEO2
PO5	through active career, team work and using managerial skills guide people to the right destination in a smooth and efficient way.	PEO2
PO6	employ appropriate analysis tools and ICT in a range of learning scenarios, demonstrating the capacity to find, assess, and apply relevant information sources.	PEO1, PEO2 & PEO3
PO7	learn independently for lifelong executing professional, social and ethical responsibilities leading to sustainable development.	PEO3

Programme Specific Outcomes (PSOs)

PSO	Upon completion of M.Sc. Degree Programme, the graduates of Mathematics will be able to:	PO Addressed
PSO-1	acquire good knowledge and understanding, to solve specific theoretical & applied problems in different area of mathematics & statistics	PO1 & PO2
PSO-2	understand, formulate, develop mathematical arguments, logically and use quantitative models to address issues arising in social sciences, business and other context /fields.	PO3 & PO5
PSO-3	prepare the students who will demonstrate respectful engagement with other's ideas, behaviors, beliefs and apply diverse frames of references to decisions and actions	PO6
PSO-4	pursue scientific research and develop new findings with global Impact using latest technologies.	PO4 & PO7

	possess leadersh	ip, teamwork an	d professional	skills, enabl	ing them to	
PSO-5	become culture	d and civilized	individuals	capable of	effectively	PO5 & PO7
	overcoming chal	lenges in both pri	vate and public	c sectors.		

		11 0			
POs	PSO1	PSO2	PSO3	PSO4	PSO5
PO 1	S	М	S	S	S
PO 2	S	S	S	S	М
PO 3	S	S	М	S	S
PO4	S	М	S	S	М
PO5	М	S	М	S	S
PO6	S	S	S	М	S
PO7	S	S	S	S	S

Mapping of PO'S and PSO'S

Strong -S (3), Medium – M (2), Low – L (1)

COURSE OUTCOMES

SEMESTER-I

CORE COURSE – I: ALGEBRAIC STRUCTURES Course Code : MP231CC1

On t	he successful completion of the course, student will be able to:	
	recall basic counting principle, define class equations to solve problems,	K1
1.	explain Sylow's theorems and apply the theorem to find number of Sylow	
	subgroups.	
2	define Solvable groups, define direct products, examine the properties of	K2
2.	finite abelian groups, define modules	
	define similar Transformations, define invariant subspace, explore the properties	K3
	of triangular matrix, to find the index of nilpotence to decompose a space into	
3.	invariant subspaces, to find invariants of linear transformation,	
	to explore the properties of nil potent transformation relating nilpotence with	
	invariants.	
	define Jordan, canonical form, Jordan blocks, define rational canonical form,	K3,
4.	define companion matrix of polynomial, find the elementary devices of	K4
	transformation, apply the concepts to find characteristic	
	polynomial of linear transformation.	
	define trace, define transpose of a matrix, explain the properties of trace and	K5
	transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma	
5.	using the triangular form, define symmetric matrix, skew symmetricmatrix,	
	adjoint, to define Hermitian, unitary, normal transformations and to	
	Evaluate whether the transformation in Hermitian, unitary and normal	
5.	transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma using the triangular form, define symmetric matrix, skew symmetricmatrix, adjoint, to define Hermitian, unitary, normal transformations and to Evaluate whether the transformation in Hermitian, unitary and normal	

K1-Remember K2- Understand K3 - Apply K4- Analyze K5 – Evaluate

SEMESTER – I

CORE COURSE – II: REAL ANALYSIS I

Course Code : MP231CC2

On the successful completion of the course, student will be able to:

1	analyze and evaluate functions of bounded variation and Rectifiable	K4 & K5
	Curves.	
2	describe the concept of Riemann-Stieltjes integral and its properties.	K1 & K2
3	demonstrate the concept of step function, upper function, Lebesgue	K3
	function and their integrals.	
4	construct various mathematical proofs using the properties of Lebesgue	K3 & K5
	integrals and establish the Levi monotone convergence theorem.	
5	formulate the concept and properties of inner products, norms and	K2 & K3
	measurable functions.	

K1-RememberK2- Understand K3 - Apply K4- Analyze K5 - Evaluate SEMESTER – I

CORE COURSE -III: ORDINARY DIFFERENTIAL EQUATIONS

Course Code : MP241CC3

On the s	uccessful completion of the course, students will be able to:	
1	recall and describe the fundamental concepts of second-order linear	K1
	ordinary differential equations, including homogeneous and non-	
	homogeneous forms.	
2	understand the method of variation of parameters for solving non-	K2
	homogeneous second-order linear differential equations and illustrate	
	its application through examples.	
3	apply power series solutions to solve first and second-order linear	K3
	ordinary differential equations, distinguishing between ordinary points	
	and regular singular points.	
4	analyze the stability and behaviour of solutions for systems of first-	K4
	order linear differential equations with constant coefficients,	
	identifying critical points and their implications.	
5	utilize special functions such as Legendre polynomials and Bessel	K5
	functions to solve differential equations and evaluate their	
	effectiveness in addressing specific mathematical and physical	
	problems.	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate;

SEMESTER I ELECTIVE COURSE I: a) NUMBER THEORY & CRYPTOGRAPHY Course Code : MP231EC1

On the s	n the successful completion of the course, student will be able to:		
1	understand quadratic and power series forms and Jacobi symbol.	K1 & K2	
2	apply binary quadratic forms for the decomposition of a number into sum of sequences.	K3	
3	determine solutions using Arithmetic Functions.	K3	
4	calculate the possible partitions of a given number and draw Ferrer's graph.	K4	
5	identify the public key using Cryptography.	K5 & K6	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

SEMESTER – I

ELECTIVE COURSE I: b) GRAPH THEORY AND APPLICATIONS Course Code : MP231EC2

On the s	successful completion of the course, student will be able to:	
1	recall the basic concepts of graph theory and know its various parameters.	K1
2	understand the many results derived on the basis of known parameters.	K2
3	apply the concepts to evaluate parameters for the family of graphs.	K3 & K5
4	analyze the steps of various theorems and know its applications.	K1 &K4
5	create a graphical model for the real-world problem using the relevant ideas.	K6

K1-RememberK2- Understand K3 - Apply K4- Analyze K5–EvaluateK6 - Create

SEMESTER – I

ELECTIVE COURSE I C): PROGRAMMING IN C++ Course Code : MP231EC3

On the successful completion of the course, student will be able to:

0 0 0			
1	understand and analyze the concepts of tokens, expressions and control structures	K1	
2	develop the knowledge in functions and arguments	K2	
3	solve simple programs using classes and objects in C++	K3	
4	apply the properties of constructors and destructors to solve programs	K4	
5	create programs and applications using C++	K5	

K1- RememberK2 - Understand K3 - Apply K4- AnalyzeK5-Evaluate K6 - Create

SEMESTER I

ELECTIVE COURSE II: a) DISCRETE MATHEMATICS Course Code : MP241EC4

On th	ne successful completion of the course, student will be able to:	
	recall the basic concepts of measurable sets, measurable function, integration of	K1
1.	functions, Fourier series on real line and multivariable differential calculus, implicit	
	functions and extremum problems.	
	describe the elementary facts of Lebesgue measure, Lebesgue integral, Fourier	K2
2.	series and multivariable differential calculus; understand the implicit functions and	
	extremun problems.	
2	determine the measurable sets, measurable functions, the matrix representation and	K3
3.	Jacobian determinant of functions.	
4	analyze the properties of measurable functions, Riemann and Lebesgue integrals,	K4
4.	convergence of Fourier series and extrema of real valued functions.	
5.	test measurable sets and measurable functions.	K5
L		1

K1 – Remember; K2– Understand; K3 – Apply; K4-Analyze; K5 – Evaluate

SEMESTER I

ELECTIVE COURSE II: b) ANALYTIC NUMBER THEORY Course Code : MP231EC5

On the successful completion of the course, student will be able to:				
CO1	study the basic concepts of elementary number theory	K1, K2		
CO2	explain several arithmetical functions and construct their relationships	K3		
CO3	apply algebraic structure in arithmetical functions	K3		
CO4	demonstrate various identities satisfied by arithmetical functions	K2		
CO5	determine the application to $\mu(n)$ & $\Lambda(n)$ and several equivalent form of prime number theorem	K4		

 $K1-\mbox{Remember}\ K2$ - Understand K3 - Apply $K4-\mbox{Analyse}\ K5-\mbox{Evaluate}\ K6$ - Create

SEMESTER I

ELECTIVE COURSE II: c) FUZZYSETS AND THEIR APPLICATIONS Course Code : MP231EC6

On the successful completion of the course, student will be able to:				
CO1	understand the definition of Fuzzy sets and its related concepts	K1, K2		
CO2	define Fuzzy Graphs and can explain the concepts	K3		
CO3	explain the concepts in Fuzzy sets and its relations	K3		
CO4	Discuss about Fuzzy logic	K2		
CO5	analyze the compositions of Fuzzy sets.	K4		

 $K1-\mbox{Remember}\ K2$ - Understand K3 - Apply $K4-\mbox{Analyse}\ K5-\mbox{Evaluate}\ K6$ - Create

SEMESTER I

SPECIFIC VALUE ADDED COURSE -SCILAB

Course Code : MP231V01

On the s	On the successful completion of the course, student will be able to:				
1	learn basic SCILAB programming.	K1			
2	understand the basic mathematical operations using SCILAB software.	K2			
3	execute SCILAB codes for vectors, matrices, plotting lines, polynomial and differential equations	К3			
4	implement simple mathematical functions/ equations in numerical computation environment such as SCILAB.	K4			
5	interpret and visualize simple mathematical functions and operations by using plots.	K5			

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

SEMESTER I

SPECIFIC VALUE- ADDED COURSE: Creating Documents using LaTex

Course Code : MP231V02

On the su	On the successful completion of the course, student will be able to:				
1.	typeset complex mathematical formulae using LaTeX	K2& K3			
2.	use tabular and array environments within LaTeX	K2 & K3			
3.	prepare a LaTeX document, to make scientific article and project report	K3 & K6			
4.	create automatic generation of table of contents, bibliographies	K6			
5.	learn about graphics in LaTex	K2& K3			

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

SEMESTER – I

LIFE SKILL TRAINING - I ETHICS

Course Code : PG23LST1

Course Outcomes	On completion of this course the student will be	
	able to	
CO1	understand deeper insight of the meaning of their existence.	K1
CO2	recognize the philosophy of life and individual qualities	K2
CO3	acquire the skills required for a successful personal and professional life.	K3
CO4	develop as socially responsible citizens.	K4
CO5	create a peaceful, communal community and embrace unity.	K3

K1 - Remember; K2 - Understand; K3 - Apply; K4 – Analyze

SEMESTER I SPECIFIC VALUE ADDED COURSE RESOURCE MANAGEMENT TECHNIQUES Course Code : MP231V03

On the s	On the successful completion of the course, students will be able to:				
1	understand the methods of optimization and to solve the problems	K2			
2	define how to formulate an LPP with linear constraints	K2			
3	maximize the profit, minimize the cost, minimize the time in transportation problem, Travelling salesman problem, Assignment problem	К3			
4	analyze a problem and formulate it as an LPP	K4			
5	solve problems using Critical path method	K5			

K2 - Understand; K3 – Apply; K4 - Analyze; K5 - Evaluate

SEMESTER I SPECIFIC VALUE- ADDED COURSE-MATHEMATICAL FOUNDATIONS FOR DATA SCIENCE Course Code : MP231V04

On the successful completion of the course, students will be able to:									
1	acquire n	ecessary skills	and k	nowledge to ex	cel in the	fields o	of cc	omputer	K2& K3
	graphics	development	and	cryptography,	enabling	them	to	design	

	advanced graphics applications and implement secure communication	
	systems effectively.	
2	understand the concept of confidence intervals, hypothesis testing of	K2& K4
2	means and variances	
	use linear algebra techniques such as matrix operations, eigenvalue	K3
3	decomposition for data transformation and dimensionality reduction,	
	enabling efficient data representation and visualization.	
	use probability theory to assess uncertainties, calculate probabilities of	K3
4	events, and make probabilistic decisions in data-driven scenarios, such as	
	risk assessment, predictive modeling, and business analytics.	
5	solve real-world data science problems, collaborate with domain experts,	K5
	and contribute meaningfully to data science projects and initiatives.	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6– Create

SEMESTER II

CORE COURSE IV: ADVANCED ALGEBRA

Course Code : MP232CC1

On the	On the successful completion of the course, students will be able to:				
1.	exhibit a foundational understanding of essential concepts, including field	K1			
	extensions, roots of polynomials, Galois Theory, and finite extensions				
2.	demonstrate knowledge and understanding of the fundamental concepts	K2			
	including extension fields, Galois Theory, Automorphisms and Finite fields				
3.	compose clear and accurate proofs using the concepts of Field extension,	K3			
	Galois Theory and Finite field				
4.	examine the relationships between different types of field extensions and their implications by applying algebraic reasoning	K4			
5.	evaluate the validity of statements and theorems in field theory by providing proofs or counter examples	К5			

K1- Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

SEMESTER – II

CORE COURSE V: REAL ANALYSIS - II

Course Code : MP232CC2

On th	ne successful completion of the course, student will be able to:	
	recall the basic concepts of measurable sets, measurable function, integration of	K1
1	functions, Fourier series on real line and multivariable differential calculus, implicit	
	functions and extremum problems.	
	describe the elementary facts of Lebesgue measure, Lebesgue integral, Fourier	K2
2.	series and multivariable differential calculus; understand the implicit functions and	
	extremun problems.	
3	determine the measurable sets, measurable functions, the matrix representation and	К3
5.	Jacobian determinant of functions.	
1	analyze the properties of measurable functions, Riemann and Lebesgue integrals,	K4
4.	convergence of Fourier series and extrema of real valued functions.	
5.	test measurable sets and measurable functions.	K5

K1 – Remember; K2 - Understand K3 - Apply K4– AnalyzeK5 – Evaluate

SEMESTER II

CORE COURSE VI: PARTIAL DIFFERENTIAL EQUATIONS

Course Code : MP232CC3

On t	he successful completion of the course, students will be able to:	
1	recall the definitions of complete integral, particular integral, and singular	K1 & K2
	integrals.	
2	learn some methods to solve the problems of non-linear first-order partial	K2 & K3
	differential equations. homogeneous and non-homogeneous linear partial	
	differential equations with constant coefficients and solve related problems.	
3	analyze the classification of partial differential equations in three independent	K2 & K3
	variables – Cauchy's problem for a second-order partial differential equation.	
4	solve the boundary value problem for the heat equations and the wave equation.	K1 & K2
5	apply the concepts and methods in physical processes like heat transfer and	K2 & K3
	electrostatics.	

K1 - Remember; K2 - Understand; K3 - Apply

SEMESTER II

ELECTIVE COURSE III: a) MATHEMATICAL STATISTICS

Course Code : MP232EC1

On th	e successful completion of the course, students will be able to:	
1	recall the basic probability axioms, conditional probability, random variables and	K1
	related concepts	
2	learn the transformation technique for finding the p.d.f of functions of random	K2
	variables and use these techniques to solve	
	related problems	
3	compute marginal and conditional distributions and check the stochastic	K3
	independence	
4	employ the relevant concepts of analysis to determine limiting distributions of	K2
	random variables	
5	design probability models to deal with real world problems and solve problems	K3
	involving probabilistic situations.	

K1 - Remember; K2 - Understand; K3– Apply

SEMESTER – II

ELECTIVE COURSE III: b) STATISTICAL DATA ANALYSIS USING R PROGRAMMING

On the successful completion of the course, students will be able to:		
1.	recall R and its development history	K1
2.	demonstrate how to import and export data with R	K2 & K4
3.	explain discrete distributions	K3
4.	apply various concepts to write programs in R	K3 & K5
5.	apply estimation concepts in R programming	K2 & K3

Course Code : MP232EC2

K1 - Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

SEMESTER II

ELECTIVE COURSE III: c) PROGRAMMING with C++ PRACTICAL

Course Code : MP232EC3

On the successful completion of the course, students will be able to:		
1.	understand about object oriented programming and learn how to store one object inside another object	K2, K3
2.	gain knowledge about the capability to store information together in an object.	K1
3.	understand the capability of a class to rely upon another class.	K1, K4
4.	analyze the process of exposing the essential data to the outside of	K4
	the world andhiding the low level data	
5.	understand about constructors which are special type of functions	K2

K1– Remember; K2 – Understand; K3 – Apply; K4– Analyze

SEMESTER II

ELECTIVE COURSE IV: a) OPERATIONS MODELING

Course Code : MP232EC4

On the successful completion of the course, students will be able to:		
1	build and solve Transportation and Assignment problems using	K1
	appropriate method	
2	learn the constructions of network and optimal scheduling using CPM	K2
	and PERT	
3	ability to construct linear integer programming models and solve linear	K3
	integer programming models using branch and bound method	
4	understand the need of inventory management.	K2
5	to understand basic characteristic features of a queuing system and	K3
	acquire skills in analyzing queuing models	

K1 - Remember; K2 - Understand; K3 - Apply

SEMESTER – II ELECTIVE COURSE IV: b) MATHEMATICAL PYTHON

On the	successful completion of the course, student will be able to:	
1	acquire knowledge on Python and learn to run the program.	K 1

2	understand and discuss about different data types and flow control	K2 & K4
	statements.	
3	write programs in python using Lists Tuples, Sets and Dictionaries	K3
4	understand For and While loops and conditional statements.	K3 & K5
5	creates Functions and Arrays in Python	K2 & K3

K1 - Remember; K2 – Understand; K3 – Apply; K4 – Analyze; K5 – Evaluate

SEMESTER II

ELECTIVE COURSE IV: c) NEURAL NETWORKS

Course Code :MP232EC6

On the s	uccessful completion of the course, students will be able to:	
1	understand and analyze different neutron network models	K2, K4
2	understand the basic ideas behind most common learning algorithms	K2
	for multilayerperceptions, radial basis function networks.	
3	describe Hebb rule and analyze back propagation algorithms with	K1, K4
	examples	
4	study convergence and generalization and implement common learning	К3
	algorithms.	
5	study directional derivatives and necessary conditions for optimality	K5
	and to evaluate quadratic functions.	
	·	

K1– RememberK2 - Understand K3 - Apply K4– AnalyzeK5–Evaluate K6 - Create

SEMESTER II

SKILL ENHANCEMENT COURSE I: INTRODUCTION TO MS EXCEL 2007

Course Code : MP242SE1

On th	On the successful completion of the course, students will be able to:		
1.	understand the Excel interface including the ribbon, worksheets and cells	K2	
2.	enter and format data effectively including text, numbers and formulas	K3& K4	
3.	use basic functions like SUM, AVERAGE and COUNT for simple calculations	K3 & K4	
4.	manage data effectively through organization, sorting and filtering	K3 & K4	
5.	create various chart types including bar charts, line graphs, pie charts,	K4 & K5	
	and scatter plots to visually represent data.		

K2-Understand;K3-Apply;K4-Analyze;K5-Evaluate;K6-Create

SEMESTER – I & II

LIFE SKILL TRAINING – I ETHICS

Course Code : PG23LST1

Course Outcomes	On completion of this course the student will be	
CO1	understand deeper insight of the meaning of their existence.	K1
CO2	recognize the philosophy of life and individual qualities	K2
C03	acquire the skills required for a successful personal and professional life.	К3
CO4	develop as socially responsible citizens.	K4
CO5	create a peaceful, communal community and embrace unity.	K3

SEMESTER III CORECOURSE VII : COMPLEX ANALYSIS Course Code : MP233CC1

On the successful completion of the course, students will be able to:		
1	demonstrate the ability to compute line integrals over rectifiable arcs and apply Cauchy's Theorem to evaluate integrals in various domains.	K2, K3
2.	interpret and apply advanced concepts such as Jensen's Formula and Hadamard's Theorem to analyze the behavior of entire functions and infinite products.	K3, K4
3.	apply the calculus of residues to evaluate definite integrals and utilize harmonic functions to solve boundary value problems using Poisson's Formula and Schwarz's Theorem.	K3, K5
4	construct power series expansions using Weierstrass's Theorem and apply partial fractions and factorization techniques to manipulate complex functions.	K3, K6
5.	analyze the local properties of analytic functions, including removable singularities, zeros, poles, and the Maximum Principle.	K4

K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate; K6– Create

SEMESTER III CORE COURSE VIII: TOPOLOGY Course Code : MP233CC2

On the s	uccessful completion of the course, students will be able to:	
1	recall the definitions of topological space, basis, various topologies,	K1
	closed sets, limit points, continuity, connectedness, compactness,	
	separation axioms, countability axioms and completeness	
2	defends the basic results in topological spaces, continuous functions,	K2
	connectedness, compactness, countability and separation axioms and	
	complete metric spaces	
3	solve problems on topological spaces, continuous functions and	K3
	topological properties	
4	analyse various facts related to continuous functions, connected spaces,	K4
	compact spaces, countable spaces, separable spaces, normal space and	
	compact spaces	
5	evaluate the comparison between different types of topological spaces	K 5
	V1 Demember V2 Understand V2 Apply V4 Applying V5 Evolution	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate;

SEMESTER III CORECOURSE IX: TRADITIONAL MECHANICS Course Code : MP233CC3

On the s	uccessful completion of the course, students will be able to:	
1.	grasp concepts like time dilation, relativistic dynamics, and the	K1
	equivalence principle.	
2.	understand classical mechanics principles such as coordinates, constraints,	K2
	and energy-momentum relationships for analyzing mechanical systems.	
3.	apply Lagrangian methods to special cases such as impulsive motion and	K3
	systems with constraints, thereby expanding their problem-solving abilities	
4.	integrate classical and relativistic mechanics, enabling them to analyze	K4
	systems ranging from everyday mechanics to those involving high speeds	
	and gravity.	
5.	become proficient in using Lagrangian mechanics to solve complex	K5
	problems and identify integral properties of motion.	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

SEMESTER III CORE - RESEARCH PROJECT Course Code : MP233RP1

On the s	On the successful completion of the course, students will be able to:		
1.	learn to manage research projects, adhering to timelines and adapting to	K1	
	challenges.		
2.	understand ethical considerations in research and collaborate effectively	K2	
	with peers and advisors.		
3.	conduct independent research, from formulating questions to gathering	K2	
	data.		
4.	communicate their research findings through written reports and oral	K3, K5	
	presentations.		
5.	develop critical thinking skills, analyzing findings and drawing informed	K4, K6	
	conclusions.		

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate; K6 – Create

SEMESTER III ELECTIVE COURSE V: a) ALGORITHMIC NETWORK ANALYSIS Course Code : MP233EC1

On the s	On the successful completion of the course, students will be able to:		
1.	recall and identify basic concepts and facts related to algorithms, data structures, and graph theory, including definitions, properties, and terminology.	K1	
2.	demonstrate a solid understanding of the principles and theories including their applications in problem-solving and computational analysis.	K2	
3.	apply algorithmic techniques to solve real-world problems efficiently.	К3	
4.	analyze algorithms, data structures, and graph theory concepts to identify	K4	

	optimal solutions for computational problems.	
5.	represent graphs in a computer using different data structures.	K5

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 – Evaluate

SEMESTER III ELECTIVE COURSE V: b) INTRODUCTION TO MACHINE LEARNING USING PYTHON Course Code : MP233EC2

On the s	On the successful completion of the course, students will be able to:		
1	gain a solid understanding of probability theory, including random experiments and the binomial distribution.	K1, K2	
2	understand the importance of machine learning and its application in analytics	K2	
3	declare variables, use conditional statements, generate sequence numbers, implement control flow statements, and define functions.	K3	
4	acquire knowledge of statistical concepts such as the normal distribution, and other important probability distributions, enabling them to analyze data effectively using Python	K4	
5	possess skills in data exploration and visualization, capable of drawing various plots including bar charts and comparing distributions.	K5	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

SEMESTER III ELECTIVE COURSE V : c) CODING THEORY Course Code : MP233EC3

On the s	On the successful completion of the course, students will be able to:		
1	gain a deep understanding of fundamental concepts in coding theory, and	K1, K2	
	their applications in error detection and correction.		
2	understand how the information theory principles influence the design	K2	
	and optimization of error-correcting codes.		
3	apply combinatorial theory principles to construct efficient error-	K3	
	correcting codes, such as Hamming codes and Golay codes		
4	explore advanced coding methods and understand their constructions,	K4	
	properties, and applications in modern communication systems and		
	cryptography.		
5	develop the ability to analyze and evaluate various coding techniques and	K5	
	algorithms, including majority logic decoding and weight enumerators		

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyze; K5 - Evaluate;

SEMESTER III SKILL ENHANCEMENT COURSE II: RESEARCH METHODOLOGY Course Code : MP233SE1

On the successful completion of the course, students will be able to:				
1	understand the obje	ectives and methods of	research , standard structure of a	K2

	scientific paper and avoid plagiarism.	
2	analyzing research data and statistical measures such as measures of central	K4
	tendency, dispersion, and asymmetry.	
3	identify the ethics of scientific paper writing and analyze research problems	K4
4	develop research designs for specific research problems and assess the significance of research in various fields.	K5
5	create structured scientific research papers and write project proposals and progress reports for research funding.	K6

K2 - Understand; K3 - Apply; K4 - Analyze; K5- Evaluate; K6- Create

SEMESTER III

SPECIFIC VALUE ADDED COURSE: DOCUMENTATION USING OVERLEAF AND MATHCHA Course Code : MP233V01

On the successful completion of the course, students will be able to:		
1	type set complex mathematical formulae using LaTeX	K2& K3
2	use tabular and array environments within LaTeX	K2 & K3
3	prepare a LaTeX document, to make scientific article and project report	K3 & K6
4	create automatic generation of table of contents, bibliographies	K6
5	learn about graphics in LaTex using Mathcha	K2& K3

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyse; K5 - Evaluate; K6 - Create

SEMESTER III SPECIFIC VALUE ADDED COURSE – CHEMICAL GRAPH THEORY Course Code : MP233V02

On the s	On the successful completion of the course, students will be able to:		
1	understand the relationship between graph theory and chemistry.	K2	
2	apply graph theoretical concepts to model and analyze chemical compounds, molecular topology, and molecular structures.	К3	
3	develop skills in analyzing and manipulating weighted graphs, including vertex and edge weighted graphs, and understanding their significance in optimization problems and network analysis.	K2, K4	
4	develop critical thinking and problem-solving exercises involving various chemical graphs.	K2, K3	
5	explore the mathematical properties and applications in areas like material science and network design.	K4	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse

SEMESTER III SPECIFICVALUE-ADDED COURSE: ADVANCED LATEX WITH OVERLEAF Course Code : MP233V03

On the successful completion of the course, student will be able to:			
1	include mathematical expressions, tables, and images in documents using	K2 & K3	

	LaTeX	
2	understand document structure and organization, including abstracts,	K2& K4
2	chapters, sections, and lists.	
2	create well-formatted documents and presentations suitable for academic	K3& K6
5	and professional purposes.	
2	generate tables of contents, captions, labels, and references in LaTeX	K3& K6
3	documents	
1	understand the Beamer class for creating presentations, including	K6
4	customization of themes, fonts, and layouts	

K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

SEMESTER III

SPECIFIC VALUE ADDED COURSE: SOCIAL NETWORK ANALYSIS Course Code : MP233V04

On the	On the successful completion of the course, student will be able to:		
	understand the fundamental concepts and theories in social network	K1 & K2	
1	analysis.		
2	develop the skills in collecting and organizing network data.	K2 & K4	
3	apply appropriate methods and tools for analyzing social networks.	K3	
4	interpret and visualize the network data effectively.	K4 & K5	
	explore real-world applications of social network analysis in different	K6	
5	domains.		

K1 – Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

SEMESTER III SELF LEARNING COURSE-DIFFERENTIAL EQUATIONS FOR SET/ CSIR-NET EXAM Course Code : MP234SL1

On the successful completion of the course, student will be able to:		
1	proficiency in solving second order ordinary differential equations with	K2 & K3
1	constant coefficients.	
2	develop deeper understanding of differential equations concepts.	K2 & K4
3	ability to solve various types of first order ordinary differential equations.	K3 & K5
4	critical thinking and problem solving skills through the analysis and	K3 & K6
4	interpretation of differential equations and their solutions.	
5	develop analytical thinking.	K4

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

SEMESTER IV CORE COURSE X : FUNCTION ALANALYSIS Course Code : MP234CC1

On the successful completion of the course, students will be able to:		
1	able to demonstrate comprehension of the definitions and basic properties of	K1
	Banach and Hilbert spaces	
2	able to apply the Hahn Banach theorem to extend continuous linear functionals	K3
	on subspaces to the whole space	

3	describe the concept of adjoint operators in Hilbert spaces and recognize	K2
	properties of self-adjoint, normal, and unitary operators	
4	analyze the concepts of determinants, spectrum, and the spectral theorem for	K4
	operators in finite-dimensional spaces	
5	evaluate the structure of commutative Banach algebras, including understanding	K5
	the Gelfand Mapping and applications of spectral radius formula	

K2 - Understand; K3 - Apply; K4 - Analyze; K5– Evaluate; K6- Create

SEMESTER IV CORECOURSE XI: PROBABILITY THEORY Course Code : MP234CC2

On the s	uccessful completion of the course, students will be able to:	
1	recall the basic probability axioms, conditional probability, random	K1
	variables, and related concepts	
2	define Special Mathematical Expectations, The Binomial Distribution,	K2
	and The Poisson Distribution.	
3	define The Exponential, Gamma, and Chi-square Distributions, The	K2
	Normal Distribution.	
4	study Bivariate Distributions of discrete, and continuous types, The	K5
	correlation coefficient, Conditional Distribution, and The Bivariate	
	Normal Distribution.	
5	discuss Functions of one random variable, Transformations of two	K3, K4
	random variables, The central limit Theorem, Chebyshve's inequality,	
	and convergence in probability, Limiting moment-generating functions.	

K2 - Understand; K3 - Apply; K4 – Analyze

SEMESTER IV CORE COURSE XII: NUMERICAL ANALYSIS Course Code : MP234CC3

On the s	uccessful completion of the course, students will be able to:	
1	recall and list basic numerical methods covered in the course, including	K1
	root-finding algorithms and interpolation techniques.	
2	understand the principles behind key numerical algorithms such as	K2
	Newton's method, Gaussian elimination, and Runge-Kutta methods.	
3	apply numerical methods to solve algebraic equations, interpolate data	K3
	points, fit curves to data sets, and solve systems of linear equations.	
4	analyse the accuracy, convergence, and stability of numerical solutions	K4
	obtained using different techniques.	

5	evaluate the suitability and effectiveness of various numerical methods	K5
	for specific mathematical problems based on computational efficiency	
	and solution quality.	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate; K6 – Create

SEMESTER IV ELECTIVE COURSE VI: a) NETWORK SECURITY AND CRYPTOGRAPHY Course Code : MP234EC1

On the successful completion of the course, students will be able to:		
1	demonstrate proficiency in employing classical encryption techniques,	K3, K4
	including symmetric cipher models, substitution techniques, and	
	transposition techniques, to secure data transmission and storage.	
2	design and implement message authentication mechanisms to verify the	K3, K6
	integrity and authenticity of transmitted data.	
3	analyze and identify various security attacks and vulnerabilities in	K4
	computer and network systems.	
4	evaluate the principles and algorithms of public-key cryptography for	K5
	ensuring confidentiality, integrity, and authenticity in communication	
	channels.	
5	develop expertise in deploying user authentication protocols to	K6
	authenticate remote users securely and manage access control in	
	networked environments.	

K3 – Apply; K4 - Analyse; K5 - Evaluate; K6 – Create

SEMESTER IV

ELECTIVE COURSE VI :b) FOUNDATIONS OF COMPUTER NETWORKING Course Code : MP234EC2

On the s	On the successful completion of the course, students will be able to:		
1	demonstrate a thorough understanding of network hardware, reference	K2	
	models (such as OSI and TCP/IP), and the architecture of the Public		
	Switched Telephone Network (PSTN).		
2	describe the architecture and services of the application layer, analyze	K2, K4	
	protocols such as HTTP for web communication, and understand the		
	principles of streaming media and real-time conferencing over networks.		
3	design data link layer protocols, analyze error detection and correction	K3, k4	
	techniques, and implement routing algorithms for efficient data		
	transmission.		
4	develop skills in identifying congestion control issues, apply appropriate	K3, k4	
	congestion control algorithms, and implement traffic-aware routing		
	strategies to optimize network performance.		
5	demonstrate proficiency in analyzing and implementing transport layer	K4	
	protocols, particularly TCP, including connection establishment, data		
	transfer, and connection release mechanisms.		

K2 - Understand; K3 – Apply; K4 - Analyse;

SEMESTER IV ELECTIVE COURSE VI: c) DATA COMMUNICATION Course Code :MP234EC3

On the s	uccessful completion of the course, students will be able to:	
1	understand the concepts of data terminal equipment (DTE) and data	K2
	circuit-terminating equipment (DCE) interfaces, and functionality of	
	modems, including 56K modems and cable modems, in digital data	
	transmission.	
2	explain the OSI model and the functions of its layers and apply this	K2, K3
	knowledge to understand the operation of the TCP/IP protocol suite.	
3	understand the encoding and modulation techniques and gain knowledge	K2, K3
	of digital-to-digital, analog-to-digital, digital-to-analog, and analog-to-	
	analog conversion methods, along with their applications in data	
	transmission.	
4	describe and analyze line configurations, topologies, transmission modes,	K4
	and various categories of networks.	
5	distinguish between analog and digital signals, describe their	K4
	characteristics, and analyze their representation in both time and	
	frequency domains.	

K2 - Understand; K3 – Apply; K4 - Analyse;

SEMESTER IV ELECTIVE COURSE V: a) APPLICATIONS OF MATHEMATICS IN ARTIFICIAL INTELLIGENCE Course Code : MP234EC4

On the s	On the successful completion of the course, students will be able to:		
1.	demonstrate proficiency in mathematical concepts as applied toAI	К3	
2.	apply mathematical algorithms to build, train, AI models using the programming language Python	К3	
3.	analyse and interpret the behaviour of AI models using mathematical techniques	K4	
4.	tackle a variety of AI challenges using mathematical reasoning and analytical techniques	К5	
5.	propose novel approaches and solutions to complex problems in AI	K6	

K3 – Apply; K4 - Analyse; K5 - Evaluate; K6 – Create

SEMESTER IV ELECTIVE COURSE VII: b) FINANCIAL MATHEMATICS Course Code : MP234EC5

On the successful completion of the course, student will be able to:		
1	gain a solid understanding of interest rates, present value analysis and their	K1
1	role in financial decision-making.	
2	understand the principles of arbitrage and its application in pricing various	K2
2	financial contracts, including options.	
3	comprehend the Arbitrage Theorem and its implications in identifying and	К3
5	exploiting pricing inefficiencies in financial markets.	
4	develop familiarity with the Black-Scholes Formula, its properties and its	K4

	application in options pricing.	
5	apply learned concepts to solve practical problems in options pricing, delta hedging strategies and identifying arbitrage opportunities in financial markets.	K5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate

SEMESTER IV ELECTIVE COURSE VII: c) STOCHASTIC PROCESS Course Code : MP234EC6

On the successful completion of the course, students will be able to:		
1.	recall the basic results of Markov Chains as Graphs- Higher Transition	K1
	Probabilities	
2.	understand Stability of a Markov System	K2
3.	apply Generalisations of Poison Process-Poison Process in Higher	К3
	Dimensions-	
4.	determine Discrete Stat Space-Introduction-Chapman-Kolmogorov	K4
	Equations	
5.	calculate the possible partitions of a given number and draw Ferrer's	K5
	graph	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 - Evaluate;

SEMESTER IV

SKILL ENHANCEMENT COURSE III: TRAINING FOR COMPETITIVE EXAMINATIONS Course Code : MP234SE1

On the successful completion of the course, students will be able to:			
1.	describe the concepts of topological properties of metric spaces.	K1	
2.	associate the concept of continuity and connectedness	K2	
3.	apply Cauchy's integral formula and Maximum modulus principle to evaluate integral	К3	
4.	outline Liouville's theorem and open mapping theorem	K4	
5.	built the mental ability to face GATE, CSIR and SET examinations	K5	

K1 - Remember; K2 - Understand; K3 – Apply; K4 - Analyse; K5 – Evaluate

SEMESTER IV SELF LEARNING COURSE CALCULUS OF VARIATIONS AND INTEGRAL EQUATIONS Course Code : MP234SL1

On completion of this course the student will be able to		
1	recognize the perception of life and lead a positive life	K1
2	understand relationship with family, friends and the society	K2
3	develop as socially responsible citizens.	K3
4	assess goals, fix targets and value life	K4
5	create a peaceful, communal community and embrace unity.	K6

SEMESTER – III & IV LIFE SKILL TRAINING II – VALUES

Course Code : PG23LST2

On completion of this course the student will be able to		
1	recognize the perception of life and lead a positive life	K1
2	understand relationship with family, friends and the society	K2
3	develop as socially responsible citizens.	K3
4	assess goals, fix targets and value life	K4
5	create a peaceful, communal community and embrace unity.	K6